Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Технологии модуляции
Аналоговая модуляция
Цифровая модуляция
Импульсная модуляция
Расширение спектра
См. также: Демодуляция
Распределение поднесущих OFDM сигналов относительно амплитудно-частотных характеристик фильтров БПФ (быстрого преобразования Фурье)[1]

OFDM (англ. Orthogonal frequency-division multiplexing — мультиплексирование с ортогональным частотным разделением каналов) — технология цифровой модуляции с использованием большого количества близко расположенных ортогональных поднесущих (мультиплексирование)[1]. Каждая поднесущая модулируется одним из возможных методов (например, квадратурная амплитудная модуляция) на низкой символьной скорости, позволяя достигать близкую к теоретическому пределу суммарную скорость передачи данных, как и у других способов модуляции одной несущей в той же полосе пропускания. На практике сигналы OFDM получаются применением обратного БПФ (Быстрое преобразование Фурье).

Принцип размещения поднесущих

OFDM сигнал формируется гармоническими поднесущими, которые разнесены по частоте на равные интервалы (в этом случае речь идёт об эквидистантном размещении поднесущих).

При таком размещении частот занимаемая OFDM сигналом полная полоса частот делится на подканалов, ширина которых , где  — длительность сигнальной выборки, над которой выполняется операция быстрого преобразования Фурье (символьный интервал).

Таким образом, если записать выражение для частотного интервала между поднесущими в виде , то случай будет соответствовать OFDM.

Общая полоса частот, которую занимают N ортогональных частотных подканалов OFDM, описывается выражением: .

Преимущества

Основным преимуществом OFDM по сравнению со схемой с одной несущей является её способность противостоять сложным условиям в канале. Например, бороться с затуханием в области ВЧ в длинных медных проводниках, узкополосными помехами и частотно-избирательным затуханием, вызванным многолучевым характером распространения, без использования сложных фильтров-эквалайзеров. Канальная эквализация упрощается вследствие того, что OFDM сигнал может рассматриваться как множество медленно модулируемых узкополосных сигналов, а не как один быстро модулируемый широкополосный сигнал. Низкая символьная скорость делает возможным использование защитного интервала между символами, что позволяет справляться с временным рассеянием и устранять межсимвольную интерференцию (МСИ).

Недостатки OFDM

Условие ортогональности поднесущих помимо указанных преимуществ обусловливает и ряд недостатков метода OFDM[1]:

  • ограниченная спектральная эффективность при использовании относительно широкой полосы частот;
  • невозможность манёвра частотой поднесущих для отстройки от сосредоточенных по спектру помех;
  • чувствительность к доплеровскому смещению частоты, что снижает возможности реализации высокоскоростной связи с движущимися объектами.

Передатчик

Сигнал OFDM — сумма нескольких ортогональных поднесущих[1], на каждой из которых передаваемые на основной частоте данные независимо модулируются с помощью одного из типов модуляции (BPSK, QPSK, 8-PSK, QAM и др.). Далее этим суммарным сигналом модулируется радиочастота.

 — это последовательный поток двоичных цифр. Перед обратным быстрым преобразованием Фурье (FFT) этот поток преобразуется сначала в N параллельных потоков, после чего каждый из них отображается в поток символов с помощью процедуры фазовой (BPSK, QPSK, 8-PSK) или амплитудно-фазовой квадратурной модуляции (QAM). При использовании модуляции BPSK получается поток двоичных чисел (1 и −1), при QPSK, 8-PSK, QAM — поток комплексных чисел. Так как потоки независимы, то способ модуляции и, следовательно, количество бит на символ в каждом потоке могут быть разными. Следовательно, разные потоки могут иметь разную битовую скорость. Например, пропускная способность линии 2400 бод (символов в секунду), и первый поток работает с QPSK (2 бита на символ) и передает 4800 бит/с, а другой работает с QAM-16 (4 бита на символ) и передает 9600 бит/с.

Обратное FFT считается для N одновременно поступающих символов, создавая такое же множество комплексных (двухмерных) отсчетов в развёртке по времени (time-domain samples). Далее ЦАП (DAC) преобразуют в аналоговый вид раздельно ортогональные информационные компоненты, модулирующие, соответственно, несущие косинусоиду и синусоиду. Отмодулированные ортогональные несущие суммируются и дают передаваемый сигнал s(t).

Приёмник

Приемник принимает сигнал r(t) , выделяет из него косинусную (cos) и синусную (sin) квадратурные составляющие с помощью умножения r(t) на и — и фильтров нижних частот, которые отфильтровывают колебания в полосе вокруг . Получившиеся сигналы далее оцифровываются с помощью аналого-цифровых преобразователей (ADC), подвергаются прямому быстрому преобразованию Фурье (FFT). Получается сигнал в частотной области.

Теперь есть N параллельных потоков, каждый из которых преобразуется в двоичную последовательность с помощью заданного алгоритма фазовой модуляции (при использовании в передатчике BPSK, QPSK, 8-PSK) или амплитудно-фазовой квадратурной модуляции (при использовании в передатчике QAM). В идеале получается поток битов, равным потоку, который передал передатчик.

Применение

Проводная связь

Беспроводная связь

  • беспроводные системы связи стандарты IEEE 802.11 и HIPERLAN/2;
  • наземные системы цифрового телевидения DVB-T, DVB-T2 и ISDB-T;
  • наземные системы мобильного телевидения DVB-H, DVB-T2, T-DMB, ISDB-T и MediaFLO;
  • система цифрового радиовещания DRM;
  • беспроводные системы связи стандарта Flash-OFDM;
  • беспроводные системы связи стандарта LTE;
  • беспроводные системы связи стандарта IEEE 802.16 (WiMAX);
  • беспроводные системы связи стандарта IEEE 802.20, IEEE 802.16e (Mobile WiMAX) and WiBro;
  • беспроводные системы связи стандарта IEEE 802.15.3a.

См. также

Примечания

  1. 1 2 3 4 Слюсар, Вадим. Неортогональное частотное мультиплексирование (N-OFDM) сигналов. Часть 1. Технологии и средства связи. – 2013. - № 5. С. 61 - 65. (2013). Дата обращения: 14 июля 2019. Архивировано 6 апреля 2016 года.

Литература

  • Владимир Лебедев. Модуляция OFDM в радиосвязи // Радиолюбитель. — 2008. — № 9. — С. 36—40.
  • Бакулин М. Г., Крейнделин В. Б., Шлома А. М., Шумов А. П. Технология OFDM. Учебное пособие для вузов. — М.: Горячая линия - Телеком, 2015. — 360 с. — ISBN 978-5-9912-0549-8.

Ссылки

Эта страница в последний раз была отредактирована 8 апреля 2024 в 13:22.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).