Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Семиугольная мозаика

Из Википедии — свободной энциклопедии

Семиугольная мозаика
Семиугольная мозаика
Тип Гиперболическая<br/>правильная мозаика[en]
Вершинная фигура 73
Символ Шлефли {7,3}
Символ Витхоффа[en] 7 2
Диаграмма Коксетера node_17node3node
Группа симметрии [7,3], (*732)
Двойственный
многогранник
Треугольная мозаика<br/> порядка 7[en]
Свойства Вершинно транзитивна,
рёберно транзитивна[en],
транзитивна по граням[en]

Семиугольная мозаика — правильная мозаика на гиперболической плоскости. Она представляется cимволом Шлефли {7,3} и имеет три правильных семиугольника в каждой вершине.

Иллюстрации


Модель полуплоскости Пуанкаре

Дисковая модель Пуанкаре

Модель Клейна

Связанные многогранники и мозаики

Эта мозаика имеет топологическую связь с правильными многогранниками как член последовательности правильных многогранников с cимволом Шлефли {n,3}.

*n32 варианты симметрии правильных мозаик: n3 или {n,3}
Сферические Евклидовы Компактные
гиперболические.
Параком-
пактные.
Некомпактные гиперболические.
{2,3} {3,3} {4,3} {5,3} {6,3} {7,3} {8,3} {∞,3} {12i,3} {9i,3} {6i,3} {3i,3}

Из построения Витхоффа следует, что существует восемь гиперболических однородных мозаик[en], базирующихся на правильной семиугольной мозаике.

Если раскрасить в мозаике красным исходные грани, жёлтым исходные вершины, а синим исходные рёбра, имеется 8 форм.

Поверхности Гурвица

Группа симметрии семиугольной мозаики имеет в качестве фундаментальной области (2,3,7) треугольник Шварца, который образует эту мозаику.

Группа симметрии мозаики является группой треугольника (2,3,7), и фундаментальной областью для этого действия является треугольник Шварца (2,3,7). Это наименьший гиперболический треугольник Шварца, а потому, по теореме Гурвица об автоморфизмах, мозаика является универсальной мозаикой, покрывающей все поверхности Гурвица (римановы поверхности с максимальной группой симметрии), давая мозаику семиугольниками, группа симметрии которой равна группе симметрии римановой поверхности. Наименьшей поверхностью Гурвица является квартика Клейна[en] (род 3, группа автоморфизма имеет порядок 168) и порождённая мозаика имеет 24 семиугольника, имеющие общие 56 вершин.

Двойственная треугольная мозаика порядка 7[en] имеет ту же самую группу симметрии и она задаёт триангуляции[en] поверхности Гурвица.

См. также

Примечания

Литература

Ссылки

Эта страница в последний раз была отредактирована 3 июня 2020 в 18:49.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).