Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Меандр или замкнутый меандр — это замкнутая кривая без самопересечений, которая пересекает прямую несколько раз. Интуитивно, меандр можно рассматривать как дорогу, пересекающую реку мостами в нескольких местах.

Меандр

Если задана ориентированная прямая L на плоскости R2, меандр порядка n — это замкнутая кривая без самопересечений на R2, которая поперечно пересекает прямую в 2n точках для некоторого положительного n. Прямая и кривая вместе образуют меандровую систему. Говорят, что два меандра эквивалентны, если существует гомеоморфизм всей плоскости, которая переводит L в себя, а один меандр в другой.

Пример

Меандр порядка 1 пересекает прямую дважды:

Меандр порядка 1

Меандровые числа

Число различных меандров порядка n называется меандровым числом Mn. Первые пятнадцать меандровых чисел (последовательность A005315 в OEIS).

M1 = 1
M2 = 2
M3 = 8
M4 = 42
M5 = 262
M6 = 1828
M7 = 13820
M8 = 110954
M9 = 933458
M10 = 8152860
M11 = 73424650
M12 = 678390116
M13 = 6405031050
M14 = 61606881612
M15 = 602188541928

Меандровые перестановки

Меандровая перестановка
(1 8 5 4 3 6 7 2)

Меандровая перестановка порядка n задаётся на множестве {1, 2, …, 2n} и определяется меандровой системой следующим образом:

  • Для прямой, ориентированной слева направо, каждое пересечение меандра последовательно помечаются целыми числами, начиная с 1.
  • Кривая с точки пересечения, помеченной 1, ориентируется вверх.
  • Циклическая перестановка без фиксированных точек получается проходом ориентированной кривой через помеченные точки.

На диаграмме справа меандрическая перестановка порядка 4 задаётся перестановкой (1 8 5 4 3 6 7 2). Это перестановка, записанная в циклической нотации, её не следует путать с линейной нотацией.

Если π является меандровой перестановкой, то π2 состоит из двух циклов, одна содержит все чётные элементы, другая — все нечётные. Перестановки с такими свойствами называется чередующимися перестановками (не путать с чередующимися в смысле возрастания-убывания). Однако не все чередующиеся перестановки являются меандровыми, поскольку кривые для некоторых перестановок нельзя нарисовать без самопересечений. Например, чередующаяся перестановка порядка 3 (1 4 3 6 5 2) меандровой не является.

Открытый меандр

Если задана фиксированная ориентированная прямая L на плоскости R2, открытый меандр порядка n — это ориентированная кривая без самопересечений на R2, которая пересекает прямую в n точках для некоторого положительного целого числа n. Говорят, что два открытых меандра эквивалентны, если они  гомеоморфны на плоскости.

Примеры

Открытый меандр порядка 1 пересекает прямую один раз:

Открытый меандр порядка 2 пересекает прямую дважды:

Открытые меандровы числа

Число различных открытых меандров порядка n называется открытым меандровым числом mn. Первые пятнадцать открытых меандровых чисел (последовательность A005316 в OEIS).

m1 = 1
m2 = 1
m3 = 2
m4 = 3
m5 = 8
m6 = 14
m7 = 42
m8 = 81
m9 = 262
m10 = 538
m11 = 1828
m12 = 3926
m13 = 13820
m14 = 30694
m15 = 110954

Полумеандр

Если дан ориентированный луч R на плоскости R2, полумеандр порядка n — — это непересекающаяся кривая в R2, которая пересекает луч в n точках для некоторого положительного n. Говорят, что два полумендра эквивалентны, если они гомеоморфны на плоскости.

Примеры

Полумеандр порядка два пересекает луч дважды:

Полумеандр порядка два

Полумеандровые числа

Количество различных полумеандровых чисел порядка n называется полумеандровым числом Mn (обычно обозначается надчёркиванием, а не подчёркиванием). Первые пятнадцать полумеандровых чисел (последовательность A000682 в OEIS).

M1 = 1
M2 = 1
M3 = 2
M4 = 4
M5 = 10
M6 = 24
M7 = 66
M8 = 174
M9 = 504
M10 = 1406
M11 = 4210
M12 = 12198
M13 = 37378
M14 = 111278
M15 = 346846

Свойства меандровых чисел

Существует инъекция из меандровых чисел в открытые меандровые числа:

Mn = m2n−1

Любое меандровое число может быть ограничены полумеандровыми числами:

MnMnM2n

Для n > 1 меандрические числа чётны:

Mn ≡ 0 (mod 2)

Примечания

Литература

Ссылки

Эта страница в последний раз была отредактирована 7 августа 2021 в 23:32.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).