Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Дискретное вейвлет-преобразование

Из Википедии — свободной энциклопедии

В численном и функциональном анализе дискретные вейвлет-преобразования (ДВП) относятся к вейвлет-преобразованиям, в которых вейвлеты представлены дискретными сигналами (выборками).

Первое ДВП было придумано венгерским математиком Альфредом Хааром. Для входного сигнала, представленного массивом 2n чисел, вейвлет-преобразование Хаара просто группирует элементы по 2 и образует от них суммы и разности. Группировка сумм проводится рекурсивно для образования следующего уровня разложения. В итоге получается 2n−1 разность и 1 общая сумма.

Это простое ДВП иллюстрирует общие полезные свойства вейвлетов. Во-первых, преобразование можно выполнить за операций. Во-вторых, оно не только раскладывает сигнал на некоторое подобие частотных полос (путём анализа его в различных масштабах), но и представляет временную область, то есть моменты возникновения тех или иных частот в сигнале. Вместе эти свойства характеризуют быстрое вейвлет-преобразование — возможную альтернативу обычному быстрому преобразованию Фурье. При принятии условия случайности сигнала Х спектральную плотность его амплитуд Y вычисляют на основе алгоритма Ийетса: matrixY=matrix(±X), верно и обратное matrixX=matrix(±Y).

Самый распространенный набор дискретных вейвлет-преобразований был сформулирован бельгийским математиком Ингрид Добеши (Ingrid Daubechies) в 1988 году. Он основан на использовании рекуррентных соотношений для вычисления всё более точных выборок неявно заданной функции материнского вейвлета с удвоением разрешения при переходе к следующему уровню (масштабу). В своей основополагающей работе Добеши выводит семейство вейвлетов, первый из которых является вейвлетом Хаара. С тех пор интерес к этой области быстро возрос, что привело к созданию многочисленных потомков исходного семейства вейвлетов Добеши.

Другие формы дискретного вейвлет-преобразования включают непрореженное вейвлет-преобразование (где не выполняется прореживания сигналов), преобразование Ньюлэнда (где ортонормированный базис вейвлетов выводится из специальным образом построенных фильтров типа «top-hat» в частотной области). Пакетные вейвлет-преобразования также связаны с ДВП. Другая форма ДВП — комплексное вейвлет-преобразование.

У дискретного вейвлет-преобразования много приложений в естественных науках, инженерном деле, математике (включая прикладную). Наиболее широко ДВП используется в кодировании сигналов, где свойства преобразования используются для уменьшения избыточности в представлении дискретных сигналов, часто — как первый этап в компрессии данных.

Определение

Один уровень преобразования

ДВП сигнала получают применением набора фильтров. Сначала сигнал пропускается через низкочастотный (low-pass) фильтр с импульсным откликом , и получается свёртка:

Одновременно сигнал раскладывается с помощью высокочастотного (high-pass) фильтра . В результате получаются детализирующие коэффициенты (после ВЧ-фильтра) и коэффициенты аппроксимации (после НЧ-фильтра). Эти два фильтра связаны между собой и называются квадратурными зеркальными фильтрами (QMF).

Так как половина частотного диапазона сигнала была отфильтрована, то, согласно теореме Котельникова, отсчёты сигналов можно проредить в 2 раза:

Такое разложение вдвое уменьшило разрешение по времени в силу прореживания сигнала. Однако каждый из получившихся сигналов представляет половину частотной полосы исходного сигнала, так что частотное разрешение удвоилось.

Схема разложения сигнала в ДВП[1]

С помощью оператора прореживания

вышеупомянутые суммы можно записать короче:

Вычисление полной свёртки с последующим прореживанием — это излишняя трата вычислительных ресурсов.

Схема лифтинга является оптимизацией, основанной на чередовании этих двух вычислений.

Каскадирование и банки фильтров

Это разложение можно повторить несколько раз для дальнейшего увеличения частотного разрешения с дальнейшим прореживанием коэффициентов после НЧ и ВЧ-фильтрации. Это можно представить в виде двоичного дерева, где листья и узлы соответствуют пространствам с различной частотно-временной локализацией. Это дерево представляет структуру банка (гребёнки) фильтров.

Трехуровневый банк (гребёнка) фильтров

На каждом уровне вышеприведённой диаграммы сигнал раскладывается на низкие и высокие частоты. В силу двукратного прореживания длина сигнала должна быть кратна , где  — число уровней разложения.

Например, для сигнала из 32 отсчётов с частотным диапазоном от 0 до трёхуровневое разложение даст 4 выходных сигнала в разных масштабах:

Уровень Частоты Длина сигнала
3 4
4
2 8
1 16
Представление ДВП в частотной области

Пример программы

Алгоритм Хаара

Пример быстрого одномерного вейвлет-преобразования, используя вейвлет Хаара, для массива исходных данных размером 2N (число каскадов фильтров, соответственно, равно N) на языке C#:

public static List<Double> DirectTransform(List<Double> SourceList)
        {
            if (SourceList.Count == 1)
                return SourceList;

            List<Double> RetVal = new List<Double>();
            List<Double> TmpArr = new List<Double>();

            for (int j = 0; j < SourceList.Count - 1; j+=2)
            {
                RetVal.Add((SourceList[j] - SourceList[j + 1]) / 2.0);
                TmpArr.Add((SourceList[j] + SourceList[j + 1]) / 2.0);
            }

            RetVal.AddRange(DirectTransform(TmpArr));

            return RetVal;
        }

Аналогично, пример обратного вейвлет-преобразования:

public static List<Double> InverseTransform(List<Double> SourceList)
        {
            if (SourceList.Count == 1)
                return SourceList;

            List<Double> RetVal = new List<Double>();
            List<Double> TmpPart = new List<Double>();

            for (int i = SourceList.Count / 2; i < SourceList.Count; i++)
                TmpPart.Add(SourceList[i]);

            List<Double> SecondPart = InverseTransform(TmpPart);
            
            for (int i = 0; i < SourceList.Count / 2; i++)
            {
                RetVal.Add(SecondPart[i] + SourceList[i]);
                RetVal.Add(SecondPart[i] - SourceList[i]);
            }

            return RetVal;
        }


Двумерное вейвлет-преобразование

При разработке нового стандарта JPEG-2000 для сжатия изображения было выбрано вейвлет-преобразование. Само вейвлет-преобразование не сжимает данные, но позволяет таким образом преобразовать входное изображение, что без заметного ухудшения качества изображения можно сократить его избыточность.

См. также

Примечания

Литература

  • Stéphane Mallat. A Wavelet Tour of Signal Processing
  • Захаров С. И., Холмская А. Г. Повышение эффективности обработки сигналов вибрации и шума при испытаниях механизмов // Вестник машиностроения : журнал. — М.: Машиностроение, 2001. — № 10. — С. 31—32. — ISSN 0042-4633.

Ссылки

  • Сенсор виброакустики и вибродиагностики изделий: пат № 95116U1, МПК G 01 H 1/08.
  • Fast discrete biorthogonal CDF 9/7 wavelet forward and inverse transform (lifting implementation) — реализация на Си для быстрого лифтинга дискретного биортогонального CDF 9/7 вейвлета, используемого в алгоритме сжатия изображений JPEG-2000.
  • Новая тенденция в преобразовании данных от датчиков механических и физических величин. М: Машиностроение//Вестник машиностроения,2004, № 4,стр.78.
  • Юэн Ч., Бичем К., Робинсон Дж. Микро-процессорные системы и их применение при обработке сигналов. М: Радио и связь.1986. 296 с.
  • Дхонсон Н., Лион Ф. Статистика и планирование экспериментов в технике и науке. Методы планирования экспериментов. М: Мир. 1981. 512 с.
  • Брох Е. Т. Применение измерительных систем фирмы «Брюль и Къер» к анализу механических колебаний и ударов. Сёборг; Ларсен и сын. 1973. 235 с.
  • Буте П.-А. Измерение ударных (шоковых) импульсов. Новый метод контроля состояния подшипников качения в процессе эксплуатации. Доклад. Фирма SKF. 1971. 7с.
  • Харкевич А. А. Спектры и анализ. М: Физматгиз.1963. 432 с.
Эта страница в последний раз была отредактирована 20 сентября 2023 в 01:41.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).